ACYCLIC AROMATICITY. TRIMETHYLENEMETHANE DIANION

Satoshi INAGAKI* and Yoshio HIRABAYASHI

Department of Chemistry, Faculty of Engineering, Gifu University

Yanagido, Gifu 501-11

The extent of electron delocalization in acyclic π -conjugated systems such as the dianions of trimethylenemethane and butadiene is shown to be determined by the orbital phase continuity-discontinuity properties.

Certain cross-conjugated species such as dianion $\underline{1}$ was suggested $\underline{1}$ to possess a novel aromatic character, even though the cojugation is acyclic. Recently a few experimental verifications appeared. $\underline{2}$, $\underline{3}$ We will disclose cyclic orbital interaction in acyclic conjugation by employing the many-system electron delocalization theory, $\underline{4}$ -7) and apply the orbital phase continuity requirements for electron delocalization to the dianions of trimethylenemethane ($\underline{1}$) and butadiene ($\underline{2}$).

Trimethylenemethane dianion $\underline{1}$ is considered to be a π -conjugated system where two anion centers (A, B) and a double bond (C) interact with one another (3). Butadiene dianion 2 has the identical subsystems which, however, lie in the different relative positions (4). The electronic structure, $\Phi(0)$, corresponding to the Kekule structure 3, is shown in Scheme. There are two one-electron transferred configurations, $\Phi(A\to C)$ and $\Phi(B\to C)$, and a one-electron locally-excited configuration $\Phi(C^*)$. The configuration interaction between $\Phi(0)$ and $\Phi(A \rightarrow C)$ involves the orbital interaction between φ_A and $\varphi_C^{\star}.$ The $\Phi(0)-\Phi(B+C)$ interaction The $\Phi(A\to C)-\Phi(C^*)$ interaction involves the $\phi_A-\phi_C$ involves the ϕ_{R} - ϕ_{R}^{*} interaction. a result, the orbital interaction among ϕ_A , ϕ_B , ϕ_C , and ϕ_C^* is cyclic ($\underline{5}$). In addition, the electron-donating (occupied) orbitals are on one side of the circle with the electron-accepting (unoccupied) orbital on the other (5). the delocalization is under the control of the orbital phase continuitydiscontinuity properties. 5) The orbital phase continuity requirements 4) are: (1) the donating orbitals out of phase, (2) the donating and accepting orbitals

Scheme

in phase, and (3) the accepting orbitals in phase. The orbitals in cyclic array $\underline{5}$ meet the requirements ($\underline{6}$). Trimethylenemethane dianion $\underline{1}$ is then electron-delocalizing, or aromatic. By contrast, the cyclic orbital interaction among ϕ_A , ϕ_B , ϕ_C , and ϕ_C^* dissatisfies the phase continuity requirements ($\underline{7}$). The electron delocalization is disfavored. The resulting prediction that $\underline{1}$ is more stable than $\underline{2}$ is consistent with the experimental results. $\underline{3}$)

The one-electron delocalization energy (OEDE), recently proposed⁷⁾ to estimate the degree of electron delocalization, confirms the preceding arguments. The OEDE of $\underline{1}$ is 1.568 whereas that of $\underline{2}$ is 1.338.

One of the authors (S.I.) is grateful to the Ministry of Education, Science, and Culture (Grant-in-Aid No. 56340027). The calculation was carried out by the FACOM 230-28 computer of Gifu University, and the FACOM M-200 computer of Nagoya University Computer Center.

References

- 1) P. Gund, J. Chem. Educ., 49, 100 (1972).
- 2) J. Klein and A. Medlik, J. Chem. Soc., Chem. Commun., 275 (1973).
- 3) N. S. Mills, J. Shapiro, and M. Hollingsworth, J. Am. Chem. Soc., <u>103</u>, 1263 (1981).
- 4) K. Fukui and S. Inagaki, ibid., <u>97</u>, 4445 (1975); S. Inagaki, H. Fujimoto, and K. Fukui, ibid., 98, 4693 (1976).
- 5) S. Inagaki and Y. Hirabayashi, ibid., <u>99</u>, 7418 (1977).
- 6) S. Inagaki and Y. Hirabayashi, Bull. Chem. Soc. Jpn., <u>51</u>, 2283 (1978).
- 7) S. Inagaki and Y. Hirabayashi, Inorg. Chem., in press.

(Received March 15, 1982)